Data description sheet for CH2014-Impacts, Chapter 9: Agricultural production, pest phenology

Variable

Name	Risk of 3rd codling moth generation
Units	%
Description	Long-term average risk of a 3rd codling moth generation (absolute values).

Climate data input

Data set CH2011 data set SEASONAL-REGIONAL

CH2011 scenario cube coverage

time	GHG scenario	climate
period		uncertainty
2035	A1B	medium
2060	A2	upper
2085	RCP3PD	lower

Reference period

1980-2009 (standard)

Climate variables considered

Temperature

Domain

spatial

coverage	Study sites Changins, Wädenswil, and Magadino, representing CH2011 regions CHW, CHNW, and CHS, respectively
resolution	point location

time

	coverage/resolution	CH2011 time periods
--	---------------------	---------------------

Impact Model

Name	SOPRA
Description	Seasonal pest phenology model (Samietz et al., 2008; Stoeckli et al., 2012)

Impact uncertainty coverage

Uncertainty provided	no

Data structure

Annotated Excel tables.

How to cite

Calanca, P., et al. (2014), Implications of changes in seasonal mean temperature for agricultural production systems: three case studies; Chapter 9 in CH2014-Impacts, Toward Quantitative Scenarios of Climate Change Impacts in Switzerland, published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, Switzerland, 136 pp.

Samietz, J., B. Graf, et al. (2008). SOPRA: phenology modelling of major orchard pests – from biological basics to decision support. Acta Horticulturae 803: 35–42.

Stoeckli, S., M. Hirschi, et al. (2012). Impact of climate change on voltinism and prospective diapause induction of a global pest insect – Cydia pomonella (L.). PLoS ONE 7: e35723.